Whistling of an orifice in a reverberating duct at low Mach number.

نویسندگان

  • Romain Lacombe
  • Pierre Moussou
  • Yves Aurégan
چکیده

An experimental investigation of the parameters controlling the whistling frequency and amplitude of an orifice in a confined turbulent flow is undertaken. A circular single hole orifice with sharp edges, a hole diameter equal to 0.015 m and a thickness equal to 0.005 m, is arranged in an air test rig with an inner diameter equal to 0.03 m. The Mach number ranges around 0.02 and the Reynolds number around 10(4). Variable reflecting boundary conditions are arranged upstream and downstream, and several flow velocities are tested. It is found that the Bode-Nyquist criterion accurately predicts the conditions of self-sustained oscillation and the value of the whistling frequency. Furthermore, it is found that the acoustic velocity in whistling regime varies from 1% to 15% of the steady flow velocity, and that it depends on the overall acoustic reflection of the surrounding pipe and on the Strouhal number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of aero-acoustic scattering matrices from large eddy simulation_ Application to whistling orifices in duct

The identification of the aero-acoustic scattering matrix of an orifice in a duct is achieved by computational fluid dynamics. The methodology first consists in performing a large eddy simulation of a turbulent compressible flow, with superimposed broadband acoustic excitations. After extracting time series of acoustic data with a specific filter, system acoustic scattering matrix of the orific...

متن کامل

Modelling of Suddenly Expanded Flow Process in Supersonic Mach Regime using Design of Experiments and Response Surface Methodology

The present work is an attempt to model, analyze, and control the flow at the base of an abruptly expanded circular duct by using design of experiments (DOE) and response surface methodology (RSM). Tiny-jets in the form of orifice were positioned at an interval of 900, 6.5 mm from the primary axis of the main jet of the nozzle. Experiments were conducted to measure two responses namely, base pr...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

Control of Nozzle Flow Using Microjets at Supersonic Mach Regime

This article reports the active control of base flows using the experimental procedure. Active control of base pressure helps in reducing the base drag in aerodynamic devices having suddenly expanded flows. Active control in the form of microjets having 0.5 mm radius placed at forty-five degrees apart is employed to control the base pressure. The Mach numbers of the present analysis are 1.7, 2....

متن کامل

Control of Nozzle Flow in Suddenly Expanded Duct with Micro Jets

This paper presents results of an experimental investigation carried out to control the base pressure in a suddenly expanded axisymmetric passage. Four micro-jets of 1 mm orifice diameter located at 90 0 intervals along a pitch circle diameter of 1.3 times the nozzle exit diameter in the base region were employed as active controls. The tests were conducted for Mach numbers 1.25, 1.3, 1.48, 1.6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 130 5  شماره 

صفحات  -

تاریخ انتشار 2011